High-Speed Volumetric Imaging of Brain Activity

Session Date: 
Dec 8, 2017
Session Order: 
5
Speakers: 

To understand computation in the brain, one needs to understand the input-output relationships for neural circuits and the anatomical and functional relationships between individual neurons therein. Optical microscopy has emerged as an ideal tool in this quest, as it is capable of recording the activity of neurons distributed over millimeter dimensions with sub-micron spatial resolution. I will describe how we use concepts in astronomy and optics to develop next-generation microscopy methods for imaging neural circuits at higher resolution, greater depth, and faster speed. To understand computation in the brain, one needs to understand the input-output relationships for neural circuits and the anatomical and functional relationships between individual neurons therein. Optical microscopy has emerged as an ideal tool in this quest, as it is capable of recording the activity of neurons distributed over millimeter dimensions with sub-micron spatial resolution. I will describe how we use concepts in astronomy and optics to develop next-generation microscopy methods for imaging neural circuits at higher resolution, greater depth, and faster speed.

AttachmentSize
File 2017_12_08_05_Ji-Web.mp490.53 MB